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POINTS OF SIGNIFICANCE

The curse(s) of dimensionality
There is such a thing as too much of a good thing.

Naomi Altman and Martin Krzywinski

We generally think that more 
information is better than less. 
However, in the ‘big data’ era, 

the sheer number of variables that can 
be collected from a single sample can be 
problematic. This embarrassment of riches 
is called the ‘curse of dimensionality’1 (CoD) 
and manifests itself in a variety of ways. 
This month, we discuss four important 
problems of dimensionality as it applies to 
data sparsity1,2, multicollinearity3, multiple 
testing4 and overfitting5. These effects are 
amplified by poor data quality, which may 
increase with the number of variables.

Throughout, we use n to indicate the 
sample size from the population of interest 
and p to indicate the number of observed 
variables, some of which may have missing 
values for some samples. For example, we 
may have n =​ 1,000 subjects and p =​ 200,000 
single-nucleotide polymorphisms (SNPs).

First, as the dimensionality p increases, 
the ‘volume’ that the samples may occupy 
grows rapidly. We can think of each of the p 
variables as an axis in a p-dimensional space. 
As p increases, any given neighborhood  
of the space is more likely to contain no  
data and thus be sparse. For example, in  
a sample of 1,000 points in a 2D normal 
distribution, only 6% fall within σ of (x, y) =​  
(1.5, 1.5) (scatter plot in Fig. 1). However, 
if we consider only one dimension at a 
time (histograms in Fig. 1), then 31% of 
the points fall within ±​σ of x =​ 1.5 (for the 
projection on x), and similarly (30%) for y. 
For p >​ 2, the fraction of points within the 
p-dimensional sphere of radius σ decreases 
rapidly: 1.2% at p =​ 3 and 0.2% at p =​ 4.

This increase in sparsity is hard to escape. 
Even if we move the area of interest in Fig. 1  
closer to the mean to have a fixed distance  
of 1.5 at any number of dimensions (by 
setting each of the coordinates to 1.5/√​p), 
the number of points within that area still 
drops to 14%, 7% and 3% at p =​ 2, 3  
and 4, respectively.

Practically, the increase in sparsity makes 
it much more difficult to collect data that are 
representative of the population. Consider a 
simple case of classification or prediction of 
sample phenotype from genotype. Suppose 
there are n =​ 1,000 samples, each associated 
with five unlinked SNPs (A, B, C, D and 

E) that each appear with a minor allele 
frequency of 10%. If we simply tabulate 
according to SNP A, we will expect about 
900 of the samples to have the major allele 

A and 100 to have the minor allele a. If we 
tabulate on two SNPs, A and B, we will 
expect only ten samples to exhibit both 
minor alleles with genotype ab. With SNPs 
A, B and C, we expect only one sample to 
have genotype abc, and with four or more 
SNPs, we expect empty cells in our table. We 
need a much larger sample size to observe 
samples with all the possible genotypes. As p 
increases, we may quickly find that there are 
no samples with similar values of a predictor.

Even with just five SNPs, our ability to 
predict and classify the samples is impeded 
because of the small number of subjects that 
have similar genotypes. In situations where 
there are many gene variants, this effect is 
exacerbated, and it may be very difficult to 
find affected subjects with similar genotypes 
and hence to predict or classify on the basis 
of genetic similarity.

If we treat the distance between points 
(e.g., Euclidian distance) as a measure of 
similarity, then we interpret greater distance 
as greater dissimilarity. As p increases, this 
dissimilarity increases because the mean 
distance between points increases as √​p 
(Fig. 2a). This effect is stark at high values of 
p. For example, at p =​ 100, the closest pair of 
points are farther from one another than the 
most distant two points are for about p <​ 15 
(Fig. 2a, horizontal dashed line).
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Fig. 1 | Data tend to be sparse in higher 
dimensions. Among 1,000 (x, y) points in which 
both x and y are normally distributed with a mean 
of 0 and s.d. σ =​ 1, only 6% fall within σ of (x, y) 
=​ (1.5, 1.5) (blue circle). However, when the data 
are projected into a lower dimension—shown by 
histograms—about 30% of the points (all bins 
within blue solid lines) are within σ of 1.5. Blue 
bins in histograms correspond to the blue points.
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Fig. 2 | As the number of variables p increases, distances between points grow rapidly and correlations 
decrease. The plots show results for points sampled from a p-dimensional normal distribution with a 
mean of 0 and s.d. σ =​ 1 along each dimension. a, The average pairwise distance between two points 
increases as √​p and is about 2σ√​(p/2) for large p. Shown are the minimum and maximum distances 
observed among 10,000 points (thin lines), as well as their mean and s.d. (thick black line and gray 
shaded region, respectively). b, The fraction of points within σ of the mean drops rapidly with increasing 
p. c, A decrease in the range of correlation between two random vectors with increasing dimensions. 
Lines and shading indicate the minimum, maximum, mean and s.d. as defined in a.
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The assessment of whether a particular data 
value is an outlier accordingly also becomes 
difficult2. For example, 68% of normally 
distributed points in one dimension fall 
within σ of the mean, but this fraction drops 
off precipitously for large values of p (Fig. 2b). 
For example, at p =​ 10, the fraction of points 
within σ of the mean is only 0.017%, which 
is equivalent to the points within 0.00022σ in 
one dimension (Fig. 2b, dashed lines). Putting 
it another way, points within σ at p =​ 10 are as 
rare as points outside of 3.8σ at p =​ 1. These are 
not intuitive observations—proportions of how 
points are distributed at higher dimensions are 
not the same as in one dimension.

What if we use a different distance 
measure to express similarity between 
subjects, such as correlation? Unfortunately, 
we cannot escape the CoD—the range of 
correlations between points drops rapidly 
(Fig. 2c) with p. For example, at p =​ 100, 
among 10,000 random pairs of points we see 
no correlations greater than 0.5, and most 
are extremely tightly grouped around 0. 
We can understand this analogously to the 
five-SNP example above. As the number of 
variables increases, the number of subjects 
in each set of categories decreases and the 
correlation between any two subjects across 
variables also decreases.

When the number of dimensions is larger 
than the number of samples (p >​ n), another 
effect that confounds analysis is perfect 
multicollinearity2. In this case, we can always 
express at least one of the variables as a linear 
combination of the others. For example, if we 
have p =​ 3 variables but only n =​ 2 subjects 
and we think of the subjects as two 3D 

vectors, then from linear algebra we know that 
these vectors define either a point (i.e., they 
have the same three values) or a line. In both 
cases, the three variables are related linearly. 
This is the case any time there are fewer 
samples than dimensions—the variables span 
a lower-dimensional subspace in which some 
of the dimensions become ‘redundant’ and 
expressible in terms of other dimensions, thus 
yielding perfect multiple correlation.

This kind of correlation among 
variables is problematic when they are 
used for prediction, because it means that 
interpretation of the prediction equation will 
be uncertain. For example, suppose that we 
have measured three metabolites, X, Y and 
Z, that affect the level of a hormone H. Also 
suppose that there is a fourth metabolite, U, 
that is perfectly multiply correlated with the 
other three—say, U =​ X +​ 2Y +​ 3Z. Because 
we can solve for the level of any three of 
the metabolites in terms of the fourth, we 
need to use only three of the metabolites to 
predict the hormone level. However, it is 
impossible to understand the impact of each 
of the metabolites individually. Any set of 
three of the four, or all four, can be used to 
predict the hormone level, and the data  
do not tell us which, if any, of the 
metabolites is important.

We have previously discussed the 
problems of multiple testing in the context 
of testing whether each variable has a 
significant effect on the response—for 
example, testing phenotypic association 
for each SNP4. For this type of problem, 
we have seen that standard P-value cutoffs 
of P <​ 0.05 (or P <​ 0.01) generate far too 
many false positives. Typically, we instead 
resort to controlling the family-wise error 
rate or the false discovery rate to give some 
assurance that most of our discoveries are 
true positives. Adjusting for multiple testing 
requires more stringent testing criteria, 
which vastly reduces the test’s power, leading 
to high false negative rates—another CoD.

We might also consider multiple testing 
in the context of using many variables 
as predictors, such as for regression or 
classification. In this context, we might 
want, for example, to test the contribution 
of each SNP to the prediction equation. 
We illustrate this scenario in Fig. 3, which 
demonstrates multiple linear regression of an 
output variable Y in the presence of one true 
predictor (X0) and k extraneous predictors 
(X1, . . ., Xk) for n samples. We sample all 
predictors from a normal distribution with 
a mean of 0 and an s.d. of 1 and set Y =​ X0 
in each case. Thus, we expect a regression 
coefficient for X0 with a low P value and 
nonsignificant P values for the coefficients 

of X1, . . ., Xk predictors, as only X0 affects 
Y. Among the k regression coefficients, we 
expect αk false positives if we test at P <​ α. 
Importantly, the number of false positives is 
not mitigated by an increase in sample size. 
For example, for k =​ 50 extraneous predictors, 
we do not see significantly fewer false 
positives at n =​ 1,000 than we do at n =​ 100.

Finally, overfitting is another CoD 
that occurs because the flexibility of 
prediction equations5 is in part determined 
by the number of variables involved. 
With increased flexibility, prediction 
and classification rules adapt to both the 
patterns in the population and the random 
idiosyncrasies of the training sample.

In general, it is preferable to have 
more data rather than less when 
exploring scientific questions. However, 
the proliferation of data that may be 
unrelated to the question(s) of interest 
lead to the CoD, which hinders our 
ability to detect real relationships and 
patterns. Dimension-reduction methods 
such as variable selection and principal 
component analysis6 can help to reduce 
dimensionality, but may themselves be 
affected by the CoD.

Although improved statistical and 
machine learning methods and larger 
sample sizes can partially mitigate the CoD, 
nothing replaces expertise. We need to 
carefully distinguish between exploratory 
studies in which a large number of variables 
possibly related to the process may be 
examined, and confirmatory studies in 
which a more focused set of variables with 
reduced dimensions is used for detailed 
scientific discovery. ❐
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Fig. 3 | The number of false positives increases 
with each additional predictor. The box plots 
show the number of false positive regression-fit 
P values (tested at α =​ 0.05) of 100 simulated 
multiple regression fits on various numbers 
of samples (n =​ 100, 250 and 1,000) in the 
presence of one true predictor and k =​ 10 and 
50 extraneous uncorrelated predictors. Box 
plots show means (black center lines), 25th and 
75th percentiles (box edges), and minimum and 
maximum values (whiskers). Outliers (dots)  
are jittered.
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